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We study the effects of dissipation and time-independent nonequilibrium drive on an open superconducting
graphene. In particular, we investigate how dissipation and nonequilibrium effects modify the semi-metal-BCS
quantum phase transition that occurs at half filling in equilibrium graphene with attractive interactions. Our
system consists of a graphene sheet sandwiched by two semi-infinite three-dimensional Fermi-liquid reser-
voirs, which act both as a particle pump/sink and a source of decoherence. A steady-state charge current is
established in the system by equilibrating the two reservoirs at different but constant chemical potentials. The
graphene sheet is described using the attractive Hubbard model in which the interaction is decoupled in the
s-wave channel. The nonequilibrium BCS superconductivity in graphene is formulated using the Keldysh
path-integral formalism, and we obtain generalized gap and number density equations valid for both zero and
finite voltages. The behavior of the gap is discussed as a function of both attractive interaction strength and
electron densities for various graphene-reservoir couplings and voltages. We discuss how tracing out the
dissipative environment �with or without voltage� leads to decoherence of Cooper pairs in the graphene sheet,
hence, to a general suppression of the gap order parameter at all densities. For weak enough attractive
interactions we show that the gap vanishes even for electron densities away from half filling and illustrate the
possibility of a dissipation-induced metal-superconductor quantum phase transition. We find that the applica-
tion of small voltages does not alter the essential features of the gap as compared to the case when the system
is subject to dissipation alone �i.e., zero voltage�. The possibility of tuning the system through the metal-
superconductor quantum critical point using voltage is presented.
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I. INTRODUCTION

The landmark experimental realization of an isolated
graphite monolayer, or graphene,1,2 has sparked intense the-
oretical and experimental interest in the material over the last
few years.3,4 A source of interest in the study of graphene is
the unique properties of its charge carriers. At low energies,
these charge carriers mimic relativistic particles and are most
naturally described by the �2+1�-dimensional Dirac equation
with an effective speed of light c�vF−1�106 ms−1. The
fact that graphene is an excellent condensed-matter analog of
�2+1�-dimensional quantum electrodynamics �QED� has
been known to theorists for over 20 years.5–7 However, it
was not until the spectacular experimental realization of iso-
lated graphene that experimentalists began observing signa-
tures of the QED-type spectrum in their laboratories. Conse-
quences of graphene’s unique electronic properties have been
revealed in the context of anomalous integer quantum-Hall
effect8,9 and minimum quantum conductivity in the limit of
vanishing carrier concentrations.8

In addition to its importance in fundamental physics,
graphene is expected to make a significant impact in the
world of nanoscale electronics. Research efforts in devel-
oping graphene-based electronics have been fueled by a
strong anticipation that it may supplement the silicon-based
technology which is nearing its limits.3 Graphene is a
promising material for future nanoelectronics because of
its exceptional carrier mobility which remains robustly high
for a large range of temperatures, electric-field-induced
concentrations,1,2,8,9 and chemical doping.10 Indeed, recent
experiments have explored the possibilities of in-plane

graphene heterostructures by engineering arbitrary spatial
density variation using local gates.11–13 The application of
local-gate techniques to graphene marks an important first
step on the road toward graphene-based electronics.

From a theoretical point of view we realize that graphene
nanoelectronics requires a theoretical understanding of open
nonequilibrium graphene. Naturally, graphene in nanocir-
cuits is subject to decoherence effects due to its coupling to
external leads via tunnel junctions. Furthermore, a nonequi-
librium treatment of graphene becomes necessary when a
charge current is driven through it. To this date, effects of
dissipation and nonequilibrium drive on graphene electronic
properties have not been addressed. The focus of this paper
is to show a theoretical framework in which these effects can
be studied and illustrate how they give rise to striking influ-
ences on the equilibrium properties of graphene.

This work considers dissipation and nonequilibrium ef-
fects on superconducting graphene. Beside the possibility of
superconductivity in graphene by proximity effect,14 some
works suggested the potential of achieving plasmon-
mediated singlet superconductivity in graphene.15,16 Several
groups have investigated the equilibrium mean-field theory
of superconductivity in graphene using the attractive Hub-
bard model on the honeycomb lattice. Uchoa and Castro
Neto15 studied spin singlet superconductivity in graphene at
various fillings by considering both the usual s-wave pairing
as well as pairing with p+ ip orbital symmetry permitted
by graphene’s honeycomb lattice structure. Zhao and
Paramekanti17 examined the possibility of s-wave supercon-
ductivity on the honeycomb lattice. Both works show that �in
the absence of p-wave pairing� half-filled graphene displays
a semi-metal-superconductor quantum critical point at a fi-
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nite critical attractive interaction strength uc. Away from half
filling, the system exhibits Cooper instability at any finite u
and thus undergoes the usual BCS-BEC �Bose-Einstein con-
densate� crossover as u is increased. The difficulty in achiev-
ing superconductivity at half filling is a result of the vanish-
ing density of states at the Dirac point and the absence of
electron screening.

In this work, the superconducting graphene sheet is sub-
jected to dissipation and nonequilibrium drive by coupling it
to two semi-infinite particle reservoirs via tunnel junctions.
The geometry of the system is shown in Fig. 1. While the
two reservoirs are independently held in thermal and chemi-
cal equilibriums at all times, an out-of-plane steady-state cur-
rent through graphene is established by equilibrating the res-
ervoirs at two different but constant chemical potentials. The
leads act as infinite reservoirs and are assumed to be held at
a common temperature T at all times. Nonequilibrium theory
of BCS superconductivity is formulated using the Keldysh
path-integral formalism, and the resulting nonequilibrium
mean-field equations are used to investigate the gap behavior
at and near half filling for various attractive interaction
strengths. The zero-temperature gap phase diagram in the
parameter space of filling n and the interaction strength u is
particularly interesting due to the survival of the semimetal-
lic phase at half filling. The main goal of this work is to
investigate the fate of this phase in the presence of dissipa-
tion and nonequilibrium current, and our results can be di-
rectly compared to the gap phase diagram in Fig. 2 of the
work of Zhao and Paramekanti.17

Our main results are now qualitatively summarized. We
find that the gap is generally suppressed in the presence of
the leads. As this paper will discuss in detail, the key to
understanding our findings is to notice that the dissipation of
electrons into the leads acts as a pair-breaking mechanism
for the Cooper pairs in the central graphene sheet. This
mechanism, hence the suppression, is present at both zero
and finite voltages and for all electron densities. As a conse-
quence, the Fermi-liquid ground state of the system remains
stable against Cooper pairing up to some density-dependent
finite attractive interaction strength uc�n� at all densities.

With respect to the gap phase diagram, dissipation gives rise
to a finite region around half filling in which the gap van-
ishes �see Fig. 5�. From these results, we infer that dissipa-
tion induces a metal-superconductor quantum phase transi-
tion at all fillings, for which the tuning parameter is the
attractive interaction strength u. The qualitative behavior of
the gap is not greatly different in both the zero and finite
voltage cases as long as the voltage is small, i.e., V��,
where � denotes the average tunneling rate of electrons be-
tween graphene and the two leads. However, we stress the
possibility of tuning the system across the dissipation-
induced metal-superconductor quantum phase transition us-
ing voltage. The significance lies in the fact that voltage
introduces a different means of tuning the system across the
transition in addition to a more difficult approach of adjust-
ing the attractive interaction strength.

This paper is organized as follows. In Sec. II, we intro-
duce the Hamiltonian which models our heterostructure. The
mean-field treatment of the model is formulated on the
Keldysh contour in Sec. III. In Sec. III B, the nonequilibrium
gap and number density equations will be derived. The re-
sults are presented in Sec. IV. The effects of dissipation in
the absence of voltage is discussed in Sec. IV A while the
finite voltage effects are included in Sec. IV B. We conclude
in Sec. V.

II. MODEL

The lead-graphene-lead heterostructure considered in this
work is shown in Fig. 1. Graphene is located on the z=0
plane, and each of its sites is labeled using two coordinates
ri= �xi ,yi ,zi�0�. The semi-infinite metallic leads extend
from both sides of the graphene sheet for z�0 and z�0. We
assume that the leads are separated from graphene by thin
insulating barriers and the tunneling of electrons through
each of the barriers can be described by phenomenological
tunneling parameters. Full translational symmetry is present
along the planes parallel to the xy plane for z�0 while only
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FIG. 1. A schematic of the system considered. Chemical poten-
tial mismatch in the two leads will lead to a charge current parallel
to the z axis.
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FIG. 2. Graphene honeycomb lattice. e1 and e2 are the unit-cell
basis vectors of graphene with lattice constant �3a�2.46 Å �a
�1.42 Å�. A unit cell contains two carbon atoms belonging to the
two sublattices A �white circles� and B �black circles�. All nearest-
and next-nearest-neighbor hopping matrix elements are −t and −t�,
respectively.
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the discrete translational symmetry of the graphene lattice is
present at z=0. The leads are assumed to be in thermal equi-
librium with their continuum of states occupied according to
the Fermi-Dirac distribution f����= �1+exp�	��−
��	
−1,
where �=L�left� and R�right� label the leads. An electric
potential bias is set up in the out-of-plane direction by tuning
the chemical potentials of the leads to different values.

The Hamiltonian consists of three parts,

H = Hsys + Hres + Hsys-res. �1�

The central graphene sheet is modeled using the attractive
Hubbard model on the honeycomb lattice. The kinetic term is
a tight-binding description for the � orbitals of carbon that
includes nearest- and next-nearest-neighbor hopping pro-
cesses. The on-site interaction strength is parametrized by U.
The Hamiltonian for the layer is

Hsys = − t �
�i,j
,�

�ci,�
† cj,� + H.c.� − t� �

��i,j

,�
�ci,�

† cj,� + H.c.�

− U�
i

ci,↑
† ci,↓

† ci,↓ci,↑. �2�

ci,�
† �ci,�� creates �annihilates� electrons on site ri of the

graphene honeycomb lattice with spin ���= ↑ ,↓�. U is as-
sumed positive due to attractive interaction, and t and t� are
the nearest- and next-nearest-neighbor hopping parameters,
respectively. Specific values for t and t� have been
estimated18 by comparing a tight-binding description to first-
principles calculations. Following their estimates, we take t
=2.7 eV and fix t� / t=0.04.

The honeycomb lattice can be described in terms of two
interpenetrating triangular sublattices A and B �see Fig. 2�.
Each unit cell is composed of two atoms, each one of types A
and B. Primitive translation vectors, e1 and e2, are

e1 = ��3,0�e2 = �− �3/2,3/2�e3 = e1 + e2, �3�

where they are expressed in units of a, which is the distance
between two nearest carbon atoms. Any A atom is connected
to its nearest neighbors on the B lattice by three vectors,

d1 = �0,1� ,

d2 = �− �3/2,− 1/2� ,

d3 = ��3/2,− 1/2� . �4�

In momentum space, the kinetic term reads

Hsys
K =

1

N

�
k,�

�ak,�
† bk,�

† ���k gk
�

gk �k
��ak,�

bk,�
� , �5�

where

�k = − t���
i=1

3

eik·ei + c.c.� , �6�

gk = − t�
i=1

3

eik·di. �7�

Components of the pseudospinor, ak,�
† and bk,�

† , describe qua-
siparticles that belong to sublattices A and B, respectively.
Here, N
 denotes the number of lattice sites in a triangular
sublattice. N=2N
 will denote the total number of sites on
the honeycomb lattice.

Coupling between leads and the graphene sheet is mod-
eled using the following Hamiltonian:

Hsys-res =� dkz

2�
�

�=L,R
�
i,�

���Ci,�,�,kz

† ci,� + H.c.� . �8�

�� is a phenomenological tunneling matrix that describes the
tunneling of an electron between site i on the graphene sheet
and an adjacent site on lead � �see Fig. 3�. We only consider
lead-graphene tunneling processes in which �x ,y� coordi-
nates of the electron in the initial and final states are the
same. This assumption simplifies various computational
steps without altering the qualitative features of the final re-
sults. Ci,�,�,kz

† creates an electron in lead � at coordinates
�xi ,yi� with spin � and longitudinal momentum kz. We as-
sume here that the tunneling parameters are independent of
frequency and momentum but maintain their lead depen-
dence in order to describe possible asymmetries in the lead-
layer couplings. In momentum space, the tunneling Hamil-
tonian in Eq. �8� becomes

Hsys-res = �
�

��� dkz

2�

1

N

�
k,�

��Ak,kz,�,�
† ak,� + Bk,kz,�,�

† bk,� + H.c.� . �9�

The in-plane momentum, k, is the component of momentum
parallel to the graphene plane and the out-of-plane momen-
tum, kz, is its component normal to the plane. Ak,kz,�,�

†

�Bk,kz,�,�
† � corresponds to an electron mode propagating in

“sublattice A�B�” in lead � with spin � and wave vector k.
Although the full in-plane translational symmetry of the

Lead α

BarrierGraphene sheet

FIG. 3. A diagram illustrating the type of tunneling processes
that are considered in this work. The diagram is an edge-on view of
the interface between the graphene sheet and a lead. The only tun-
neling events that are allowed are those in which the �x ,y� coordi-
nates of electrons remain unaltered. Thus, while the lower two pro-
cesses in the diagram are allowed, tunneling of the type shown at
the top is disallowed.

NONEQUILIBRIUM-INDUCED METAL-SUPERCONDUCTOR… PHYSICAL REVIEW B 78, 165401 �2008�

165401-3



leads implies that k can take on any value in R2, the tunnel-
ing assumption �see Fig. 3� tells us that the only modes that
tunnel are those with k values that are the allowed modes of
the triangular sublattices in the graphene sheet. All other in-
consequential modes can eventually be integrated out in the
path-integral sense and will merely contribute a multiplica-
tive factor in front of the partition function. Therefore, we
will not consider these modes further.

Because graphene is an atomically thin two-dimensional
material, an electron may tunnel from one lead to the other
without scattering within the graphene sheet. However, we
expect the amplitude of this direct tunneling between the
leads to be smaller in comparison to the considered lead-
layer coupling since the former involves tunneling through
two tunnel barriers as opposed to one. For this reason, direct
tunneling processes will not be considered in this work.

Both leads are assumed to be Fermi liquids,

Hres = �
�,�

1

N

� dkz

2�
�

k,kz,�
�k,kz

��Ak,kz,�,�
† Ak,kz,�,� + Bk,kz,�,�

† Bk,kz,�,�� , �10�

with a separable dispersion

�k,kz
= �k + �kz

=
�k�2

2me
+

kz
2

2me
. �11�

Beside their role as a particle pump/sink, the leads play an
important role as a heat sink. An important assumption we
make is that any heat generated in the interacting region due
to the application of a transverse electric field is efficiently
dissipated into the leads so as to prevent build up of heat in
the region. This is a well-justified assumption because the
leads are assumed to be infinite and the interacting region
has a thin profile.

In equilibrium �
res=
R=
L�, the central system is ex-
pected to reach chemical equilibrium with the reservoirs in
the long-time limit so that 
sys=
res. In the out-of-
equilibrium case, the system is coupled to two reservoirs that
are not in chemical equilibrium. Therefore, although the
electron distribution in the interacting system reaches a static
form in the long-time limit, it is in no way expected to have
an equilibrium form due to constant influx �outflux� of par-
ticles from �into� the leads.

III. KELDYSH PATH INTEGRAL FORMULATION

In this section, we formulate a theory of nonequilibrium
BCS superconductivity in graphene using the Keldysh
functional-integral formalism. The theory is first expressed in
terms of a Keldysh partition function using coherent states of
fields defined on the time-loop Keldysh contour C. Following
a Hubbard-Stratonovic decoupling of the quartic interaction
term in the pair channel, a BCS theory for superconducting
graphene is obtained by assuming a static homogeneous gap
integrating out both leads and graphene electrons and ex-
tremizing the effective action with respect to the gap. The
resulting mean-field equations, which are a nonequilibrium
generalization of the corresponding equilibrium equations,17

are analyzed in the remainder of this paper.

The starting Keldysh generating functional reads

ZK =� D�a, ā,b, b̄,A,Ā,B,B̄
eiSK
, �12�

where

SK = Ssys
K + Sres

K + Ssys-res
K . �13�

If we introduce four-component spinors defined in Nambu-
sublattice space for both graphene and leads electrons,

�k�t� � �
ak,↑�t�
ā−k,↓�t�
bk,↑�t�

b̄−k,↓�t�
� , �14�

�k,kz,��t� � �
Ak,kz,↑,��t�

− Ā−k,−kz,↓,��t�

Bk,kz,↑,��t�

− B̄−k,−kz,↓,��t�
� , �15�

the actions in Eq. �13� become

Ssys
K = �

C
dt

1

N

�
k

�̄k�t��i�t − �k�z
N − gk�z

N�−
� − gk

��z
N�+

�	�k�t�

+ U�
C

dt�
i

�āi,↑�t�āi,↓�t�ai,↓�t�ai,↑�t�

+ b̄i,↑�t�b̄i,↓�t�bi,↓�t�bi,↑�t�	 , �16�

Sres
K = �

C
dt� dkz

2�
�
�

1

N

�
k

�̄k,kz,��t��i�t − �k,kz
�z

N��k,kz,��t� ,

�17�

and

Ssys-res
K = �

C
dt� dkz

2�
�
�

��

1

N

�
k

���̄k,kz,��t��k�t� + �̄k�t��k,kz,��t�	 . �18�

��
� are 2�2 matrices given by

��
� =

1

2
��x

� � i�y
�� , �19�

where �x,y,z
� are Pauli matrices. Superscript � indicates the

space in which the matrices act; � �N� denotes sublattice
�Nambu� space. The quartic interaction term in Eq. �16� is
decoupled using Hubbard-Stratonovic fields 
i

A�t� and 
i
B�t�.

In the BCS mean-field approximation, where this field is
assumed static and homogeneous �i.e., 
i

A�t�=
i
B�t��
�, the

resulting action of the system reads
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Ssys
K = �

C
dt

1

N

�
k

�̄k�t��i�t − �k�z
N − gk�z

N�−
� − gk

��z
N�+

�

+ U
�+
N + U
��−

N	�k�t� − 2U�
�2. �20�

The self-consistency condition for the gap is


 = �ai,↓ai,↑
�t� = �bi,↓bi,↑
�t� . �21�

The time-loop contour integral is carried out by first splitting
every field into two components, labeled as “+” and “−,”
which reside on the forward and the backward parts of the
time contour, respectively.19–21 The continuous action then
becomes

SK = �
−�

�

dt�L+�t� − L−�t�	 , �22�

where L��t� is the Lagrangian corresponding to the action
defined in Eq. �13� written in terms of + �−� fields. When
time-ordered products of Heisenberg fields in the theory are
constructed on the Keldysh contour, we obtain four Green’s
functions,

iGT�t,t�� = ��+�t��̄+�t��
 ,

iGT̃�t,t�� = ��−�t��̄−�t��
 ,

iG��t,t�� = ��+�t��̄−�t��
 ,

iG��t,t�� = ��−�t��̄+�t��
 .

Because these Green’s functions are not linearly indepen-
dent, a linear transformation of the fields from the Kadanoff-
Baym basis �+,−� to the Keldysh basis �cl and q for bosons;
1 and 2 for fermions� is commonly performed. For bosons,
the barred fields are related to the unbarred fields simply by
complex conjugation, and thus, the transformation is identi-
cal for both,

��cl

�q
� =

1
�2

�1 1

1 − 1
���+

�−
� . �23�

For fermions, unbarred fields are transformed in the same
manner as Eq. �23�. For barred fields, we choose a different
transformation,19

��̄1

�̄2

� =
1
�2
�1 − 1

1 1 ���̄+

�̄−

� . �24�

In order to express the Keldysh action �Eq. �22�	 in the
Keldysh basis it is now appropriate to define eight-
component spinors for graphene and leads electrons defined
in the Nambu-sublattice-Keldysh space. Since we are inter-
ested in steady-state properties of the system, it is useful to
first Fourier transform the fields into frequency space. We
define the eight-component spinors as

�k ��
ak,↑

1

ā−k,↓
1

bk,↑
1

b̄k,↓
1

ak,↑
2

ā−k,↓
2

bk,↑
2

b̄−k,↓
2

��k,kz,�
��

Ak,kz,↑,�
1

− Ā−k,−kz,↓,�
1

Bk,kz,↑,�
1

− B̄−k,−kz,↓,�
1

Ak,kz,↑,�
2

− Ā−k,−kz,↓,�
2

Bk,kz,↑,�
2

− B̄−k,−kz,↓,�
2

� , �25�

where k��k ,�� is the energy-momentum three vector. The
action �Eq. �22�	 then becomes

Ssys
K = �

k

�̄k��g0
R�k��↑

N − g0
R�− k��↓

N	�↑
K�g0

A�k��↑
N − g0

A�− k��↓
N	�↓

K

+ g0
K�k��↑

N�+
K + g0

K�k��↓
N�−

K − gk�z
N�−

� − gk
��z

N�+
�

+ U�
q�+
N + 
q

��−
N + �
cl�+

N + 
cl
� �−

N��x
K	
�k

− 2U�
cl
� 
q + 
q

�
cl	 , �26�

Sres
K = �

k
� dkz

2�
�
�

�̄k,kz,�
��g̃�

R�k��↑
N − g̃�

R�− k��↓
N	�↑

K

��g̃�
A�k��↑

N − g̃�
A�− k��↓

N	�↓
K

+ g̃�
K�k��↑

N�+
K + g̃�

K�k��↓
N�−

K
�k,kz,�
, �27�

and

Ssys-res
K = �

k
� dkz

2�
�
�

����̄k,kz,�
�k + �̄k�k,kz,�

	 . �28�

Here, �k� 1
N


�k� d�
2� , and �↑,↓ are 2�2 matrices defined by

�↑,↓ = �1 0

0 0
�,�0 0

0 1
� . �29�

Superscript K on various � matrices indicates that they act in
Keldysh space. g0

R,A,K�k� denote inverse retarded, advanced,
and Keldysh Green’s functions for noninteracting electrons
in the graphene sheet while g̃�

R,A,K�k� are the corresponding
Green’s functions for lead �. For the graphene sheet, they are
given by

g0
R�k� = � − �k + i� = g0

A��k� , �30�

g0
K�k� = 2i�K��� . �31�

Here, K����1+2nF��� where nF��� is the usual Fermi-
Dirac distribution function. � is an infinitesimal regulariza-
tion parameter. For the noninteracting case, g0

K merely serves
as a regularization for the Keldysh functional integral. Be-
cause a finite self-energy term is anticipated from the cou-
pling of graphene electrons to the leads, g0

K can be safely
omitted here �i.e., g0

K�k��0�.19
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A. Integrating out the leads

We now integrate out the leads degrees of freedom in
order to obtain an effective theory only in terms of fields
defined on the graphene sheet. The inverse retarded, ad-
vanced, and Keldysh Green’s functions for the leads, g̃�

R,A,K,
are those corresponding to free fermions, and because the
leads are always in thermal and chemical equilibrium, the
Keldysh Green’s function is strictly related to the retarded
and advanced Green’s functions via the fluctuation-
dissipation theorem �FDT�. They are given by

g̃�
R�k� = � − �k,kz

+ i� = g�
A��k� , �32�

g̃�
K�k� = 2i� tanh�� − 
�

2T
� . �33�

Upon integrating over the leads, the resulting self-energy ac-
tion becomes

S� = �
k

�̄k�− �R�k��z
N�↑

K − �A�k��z
N�↓

K − �K�k��↑
N�+

K

− �K�k��↓
N�−

K
�k, �34�

where

�R�k� = �
�
� dkz

2�

��
2

� − �k − �kz
+ i�

= − i�
�

��t�
2 = − i� = �A��k� �35�

and

�K�k� = − 2�i�
�
� dkz

2�
��

2 tanh�� − 
�

2T
���� − �k − �kz

�

= − 2i�
�

�� tanh�� − 
�

2T
� . �36�

Here, �����t�
2 measures the effective coupling strength be-

tween the layer and leads, and �=�L+�R. � is the lead den-
sity of states to tunnel into the layer assumed to be constant.

The frequency-independent damping coefficient, �, and the
vanishing real energy shift that result from our assumptions
indicate that the bath is treated as an Ohmic environment.22

Combining the actions in Eqs. �26� and �34�, we obtain the
dressed inverse Green’s functions for electrons in the
graphene sheet,

gR�k� = � − �k + i� = gA��k� , �37�

gK�k� = 2i�
�

�� tanh�� − 
�

2T
� . �38�

The negative imaginary part of �R�k� leads to an irreversible
damping in the time-dependent Green’s function GR�k , t�.
The damping term formally describes decoherence suffered
by a propagating electron wave due to incoherent escape and
injection of electrons into and from the leads.

At this point, it is convenient to shift the energy scale so
that all energies are measured with respect to 
= �
L
+
R� /2. This is equivalent to the following mapping:

� → � − 
 ,

�k → �k − 
 ,


� → V�/2,

where VL,R= �V and V�
L−
R. We assume V�0. Follow-
ing this choice the inverse retarded Green’s function �Eq.
�37�	 remains invariant while Eq. �38� becomes

gK�k� = 2i�
�

�� tanh�� − V�/2
2T

� . �39�

Using the dressed inverse Green’s functions defined in Eqs.
�37� and �39�, the effective action for the graphene sheet is

Ssys
K,eff = �

k

�̄kGk
−1�k − 2U�
cl

� 
q + 
q
�
cl	 , �40�

where the inverse Green’s function matrix Gk
−1 is now given

by

Gk
−1 =�

gR�k� 
q − gk
� 0 gK�k� 
cl 0 0


q
� − gR�− k� 0 gk

� 
cl
� 0 0 0

− gk 0 gR�k� 
q 0 0 gK�k� 
cl

0 gk 
q
� − gR�− k� 0 0 
cl

� 0

0 
cl 0 0 gA�k� 
q − gk
� 0


cl
� gK�k� 0 0 
q

� − gA�− k� 0 gk
�

0 0 0 
cl − gk 0 gA�k� 
q

0 0 
cl
� gK�K� 0 gk 
q

� − gA�− k�

� . �41�
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B. Mean-field equations

In closed equilibrium, solutions to the mean-field gap and
number equations on the honeycomb lattice have shown that
while graphene exhibits a BCS-BEC crossover behavior
away from the Dirac point for increasing attractive interac-
tion strength, u, superconductivity in graphene at half filling
requires a finite attractive interaction.15,17 In this section, we
derive the main results of our work which are the mean-field
gap and number equations in the presence of leads and volt-
age. Solving these equations will allow us to study the ef-
fects of dissipation and nonequilibrium current on the gap as
a function of attractive interaction strength u and filling n
and compare the results to the equilibrium calculations. We
begin by obtaining an effective theory for the s-wave order
parameter alone by integrating out the graphene electrons.
From Eq. �40�, we obtain

iSeff
K �
,
�� = Tr ln�− iGk

−1	 − 2iU�
cl
� 
q + c.c.� . �42�

1. Gap equation

The saddle-point analysis of the effective Keldysh action,
Eq. �42�, proceeds by taking functional derivatives of the
action with respect to either of the two order-parameter fields
defined in the Keldysh space. Extremizing with respect to the
classical component and fixing the quantum component to
zero yield a trivial relation which we do not pursue further.
On the other hand, one may extremize with respect to the
quantum component together with fixing the quantum com-
ponent to zero �i.e., 
q=0�,

� �Seff
K

�
q
� �


cl=
,
q=0

= 0. �43�

As we will show below, this yields a self-consistent equation
for 
cl�
. In the equilibrium limit, this equation reduces to
the expected BCS gap equation. We therefore interpret the
obtained nonequilibrium self-consistent equation for 
 to be
the nonequilibrium analog of the equilibrium gap equation.

Difficulties in nonequilibrium mean-field analyses arise in
general because the associated equations possess richer
structure than the equilibrium counterparts, and one is often
left with a series of possible solutions with no basis of know-
ing which of these solutions are relevant for the subsequent
analysis. A resolution to this problem has been proposed in
Ref. 23 for a model quantum dot system where features in
the steady-state density matrix is used to select out the rel-
evant solutions. From applying this analysis to the case of an
extended system in a previous work,21 we believe that the
“classical”19 saddle-point solution �i.e., 
q=0� is in general a
unique solution to the nonequilibrium mean-field equations
for extended systems. In light of this observation, nonclassi-
cal saddle points with 
q�0 are not studied in this work.

Equation �43� yields

0 = � �Seff
K

�
q
� �


q=0,
cl=


= − iTr�� �−
N

Gk
−1�


q=0,
cl=


� −
2


U
.

�44�

This equation leads to the generalized nonequilibrium gap
equation,

2


U
= �

k

4
���
�� tanh�� − V�/2

2T
����� + Ek�2 + �2	��� − Ek�2 + �2	 + 4�k

2�gk�2


��� − E+�k�	2 + �2
��� − E−�k�	2 + �2
��� + E+�k�	2 + �2
��� + E−�k�	2 + �2

. �45�

The spectra of the two bands are given by

E��k� = ���
2 �k� + 
2 ���k� = �k � �gk� , �46�

and Ek=��k
2 + �gk�2+
2. After scaling all energies by band-

width t and evaluating the � integral we obtain

1

u
=

1

2�N
�
k

�Fv��+�k�	 + Fv��−�k�	
 , �47�

where

Fv�x� �
1

x
�tan−1� v

2
+ x

 
� − tan−1� v

2
− x

 
�� ,

and

���k� =
E��k�

t
, u =

U

t
,  � =

��

t
, v =

V

t
.

 = L+ R denotes the sum of lead-graphene tunneling rates
scaled by t. Equation �47� is the BCS gap equation in the
presence of leads � � and voltage �v� and is the nonequilib-
rium generalization of Eq. 2 in Ref. 17. Indeed when one
takes the limit as  →0 and v→0 in Eq. �47�, the equilib-
rium gap equation is recovered.

At low energies, excitations in graphene at or near half
filling are concentrated near two inequivalent Fermi points at
the corners of the hexagonal Brillouin zone. In the vicinity of
these points, we have

�k � 3t� − 
 � m �g�K+k� � vF�k� , �48�

where vF=3t /2 is the Fermi velocity and �K
= ��4� /3�3,0� are the locations of the inequivalent Fermi
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points. Within this approximation, the quasiparticle disper-
sions, ���k�, become

���k� � m � � ���k� � ���
2 + 
2, �49�

where �=vF�k�. Noting that the area per lattice site is A /N
=3�3 /4 the conversion from k summation to � integral is
given by

1

N
�
k

=
3�3

4�vF
2�

0

D

�d� . �50�

The energy cutoff, set by conserving the total number of

states in the Brillouin zone, is D=��3��2.33 in units of t.
In the continuum limit, the gap equation then becomes

1

u
=

3�3

8�2vF
2�

0

D

�d��Fv��+�k�	 + Fv��−�k�	
 . �51�

2. Number density equation

In equilibrium, the number density is computed using a
thermodynamic relation �FMF /�
=−Ne. Out of equilibrium,

the relation does not hold and the particle density, n, must be
extracted from one of the four Kadanoff-Baym Green’s func-
tions, G�, using24,25

n =
− i

4 �
�,�
�

k

G�,�
� �k� . �52�

� labels the electron spin and �� �A ,B
 labels the sublattice
in which it propagates. In terms of Keldysh Green’s
functions,19

n =
− i

4 �
�,�
�

k

�G�,�
K �K� − G�,�

R �K� + G�,�
A �K�	 , �53�

where GR,A,K�k� are the retarded, advanced, and Keldysh
Green’s functions for the graphene electrons. These Green’s
functions can be obtained by inverting the matrix, G−1�k�, in
Eq. �41�. We find that the form of the Green’s functions is
independent of spin and sublattice, and the resulting number
equation reads

n =
4 

N
�
k
� d�

2�

�1 − F��,v�	�c6�6 + c5�5 + c4�4 + c3�3 + c2�2 + c1� + c0�
��� + �+�2 +  2	��� + �−�2 +  2	��� − �+�2 +  2	��� − �−�2 +  2	

. �54�

F�� ,v� is the zero-temperature nonequilibrium electron distribution and is given by

F��,v� = �
�

 �

 
sgn�� − v�� =

 L

 
sgn�� −

v
2
� +

 R

 
sgn�� +

v
2
� . �55�

An exact evaluation of the � integral in Eq. �54� is difficult. However, it can be done in the limit where the applied bias is
assumed small compared to the bandwidth and the dampling coefficient, i.e., v�min�1, 
. Computing the integral up to
quadratic order in v the number density yields

n =
3�3

4�vF
2�

0

D

�d�
c0�10 2 + �+

2 + �−
2� + � 2 + �+

2�� 2 + �−
2��2c2 + c4�2 2 + �+

2 + �−
2� + c6�10 4 + 6 2�−

2 + �−
4 + 6 2�+

2 + �+
4�	

� 2 + �+
2�� 2 + �−

2��16 4 + �+
2�8 2 + �+

2 − �−
2� + �−

2�8 2 + �−
2 − �+

2�	

−
2

����+
2 − �−

2�3 + 8 2�+
2�2 2 + �+

2� − 8 2�−
2�2 2 + �−

2�	
� tan−1��+

 
�

�+
�c1��+

2 − �−
2 − 4 2� + c3��+

4 +  2�−
2 + 4 4 − �+

2��−
2

− 3 2�	 + c5��+
6 + 6 2�+

4 + 9 4�+
2 − �−

2� 4 − 6 2�+
2 + �+

4� − 4 6	
 − �− ↔ +� +  ln� 2 + �+
2

 2 + �−
2��2c1 + c3��+

2 + �−
2 + 2 2�

+ 2c5��+
2�−

2 −  2�+
2 −  2�−

2 − 3 4�	� + �2x − 1�
2 c0

�� 2 + �+
2�2� 2 + �−

2�2v +
 c1

2�� 2 + �+
2�2� 2 + �−

2�2v2, �56�

where x= L / and �� are given by Eq. �49�. The coefficients c0 , . . . ,c6 are dependent on ��, ��, and  and are defined as
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c6 = 1,

c5 = �+ + �−,

c4 = 3 2 −
�+

2 + �−
2

2
,

c3 = 2��+� 2 − �−
2� + �−� 2 − �+

2�	 ,

c2 = 3 4 + ��+
2 − �−

2�2 +  2��−
2 + �+

2� −
�−

4

2
−

�+
4

2
,

c1 = �−� 4 + 2 2�+
2 + �+

4� + �+� 4 + 2 2�−
2 + �−

4� ,

c0 =
1

2
��−

2 +  2���+
2 +  2���+

2 + �−
2 + 2 2� . �57�

It can be easily verified that in the limit of  →0 and v→0,
Eq. �56� reduces to the equilibrium number equation �cf. Eq.
3 in Ref. 17�. The mean-field equations in Eqs. �51� and �56�
are the central results of this work. These equations will be
analyzed in the remainder of the paper.

IV. RESULTS

Our main focus will be on obtaining and analyzing gap
phase diagrams in the parameter space of interaction strength
�u� and number density �n� for various leads-graphene cou-
plings � L , R� and external biases �v�. A previous work on
closed equilibrium graphene17 revealed that at half filling,
the superconducting instability of the semimetallic phase re-
quires a critical attractive interaction strength uc, and thus,
the gap vanishes up to uc. Away from half filling, the metallic
phase is immediately unstable to superconductivity for arbi-
trarily weak attractive interaction strength. As a result, the
gap remains finite for any finite u and the system displays a
typical BCS-BEC crossover behavior. In this section we
quantitatively discuss the effects of dissipation and nonequi-
librium current on the gap phase diagram by numerically
solving the generalized mean-field equations �Eqs. �51� and
�56�	. Sections IV A 1 and IV A 2 will show that a dramatic
modification to the phase diagram is observed by the mere
coupling of graphene to its environment even in the absence
of nonequilibrium current. We find that the effects of external
biases in addition to dissipation do not substantially alter the
qualitative features of the phase diagram from the case in
which the system is subject to dissipation alone. However, as
Sec. IV B will discuss, the application of an external bias
leads to shifts in the metallic region surrounding half filling
which result from voltage-induced changes in the graphene
electron density. The results presented here are applicable to
the case of small biases �v�min�1, 
�; effects of large bi-
ases are not considered here.

A. Finite lead-layer coupling �Å0 with zero voltage (v=0)

First, we begin with the case in which the lead-graphene-
lead heterostructure is in thermodynamic equilibrium. In par-

ticular, this is the situation where 
L=
R=
res, and in the
long-time limit 
sys=
res is maintained. Here, electron-
tunneling processes between the central graphene system and
the leads are providing a mechanism for decoherence for the
particles in the system � �0�, but an external bias that ex-
plicitly breaks time-reversal symmetry of the heterostructure
is absent �v=0�. Consider the case where the central
graphene sheet is in a superconducting phase. Because of its
coupling to the leads one can envisage a situation in which
an electron that constitutes a Cooper pair escapes into the
leads. Because the leads are assumed to be infinite the elec-
tron that has escaped the system is completely lost in the
leads and as a consequence looses its coherence with its
former partner. Although a different electron may enter the
system from a lead within a time scale of �tun�1 /�, the
electron will not necessarily pair with the widowed electron
since it completely lacks coherence to do so. Because dissi-
pation effectively acts as a pair-breaking mechanism we ex-
pect a suppression of the gap throughout the entire region of
the phase diagram.

Figure 5 plots the gap phase diagrams for various leads-
graphene coupling strengths � �. Figure 5�a� corresponds to
the closed equilibrium case which has been obtained
previously.17 Figures 5�b� and 5�c� display the behavior of
the gap as  is increased. It is apparent from these plots that
the suppressed region in the gap �dark blue region� grows as
 is strengthened. Regions of large gap values corresponding
to the region with large u also display an overall suppression
in the gap as  is increased. The qualitative features of the
diagrams are consistent with the expectation described
above. Let us now discuss the results more quantitatively.

1. Half filling (n=1)

For the closed equilibrium case at half filling � =v=0 and
n=1� the semi-metal-superconductor transition is possible
mainly because the divergent nature of the integral on the
right-hand side of Eq. �51� is cured by particle-hole symme-
try. When the integral is convergent, it is clear that a solution
to the gap equation does not exist for small u where u−1

becomes larger than the integral. The value of the critical
interaction parameter at which the transition occurs can be
easily quantified. At half filling the number equation, Eq.
�56�, is satisfied by m=3t�−
=0, and thus, at the critical
point �n=1, 
=0, and m=0� the gap equation reads

1

uc
=

3�3

4�vF
2�

0

D

d� =
1

2.33
. �58�

For any u�uc the equations cannot be solved with any real

 and the system enters the semimetallic phase. In the pres-
ence of dissipation � �0� the number equation is still solved
by m=0 at half filling, and the gap equation at the critical
point yields

1

uc
=

3�3

2�2vF
2�

0

D

d� tan−1� �

 
�

=
3�3D

2�2vF
2 �tan−1� D

−1� −
 D

2
ln�1 +  D

−2�� , �59�

where the reduced coupling strength is given by  D= /D.
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The integral on the right-hand side of Eq. �59� is convergent,
and thus, tells us that the semi-metal-superconductor transi-
tion exists in the presence of dissipation at half filling. The
behavior of uc as a function of  D is plotted in Fig. 4. We see
that the value of uc increases as  is increased. This is con-
sistent with the above considerations from which we expect
that a larger interaction parameter is necessary to achieve
pairing since leads-induced decoherence generally sup-
presses superconductivity. The phenomenon can also be ob-
served in Fig. 5 where the apex of the blue region shifts right
for larger  . The plots show that at  =0 uc converges to the
closed equilibrium value of uc�2.33 as predicted by previ-
ous calculations.

2. Away from half filling (nÅ1)

In the closed equilibrium case away from half filling, m
�0 and the critical-point condition becomes

1

uc
=

3�3

4�vF
2�

0

D

�d�� 1

�m + ��
+

1

�m − ��� = � . �60�

The divergence of the integral results in a solution with 

�0 for any small u�0. This gives uc=0 implying that Coo-
per instability occurs for any finite u away from half filling.
Let us now investigate how this is modified when  is finite.

What is notable in Fig. 5 is the expansion of the blue
region, where the gap is small, as  is increased. The ques-
tion is whether or not the typical BCS-BEC crossover behav-
ior observed in the closed equilibrium case is a correct physi-
cal picture away from half filling for finite  . The external
baths acting as a pair-breaking mechanism make the issue
subtle. The pair-breaking perturbation in a superconductor
with magnetic impurities has been shown26,27 to strongly
suppress the transition temperature of the superconductor.
Therefore, when such perturbation is strong enough the gap
may vanish completely and gives rise to a metal-
superconductor quantum phase transition at finite doping.
The question of whether or not the gap vanishes away from
half filling depends on the convergence of the integral in the
gap equation. At v=0, the generalized gap equation becomes

1

u
! �

0

D

�d�� 1

�+
tan−1��+

 
� + �+ → − �� . �61�

We see that for any m �i.e., regardless of being at half
filling or not�, the integral is convergent because for any
small ��, which is the source of divergence, the arctangent
factor nullifies the divergence. This implies a finite uc at both
half filling and away from half filling. Consequently, the sys-
tem should undergo a superconductor-to-metal phase transi-
tion as the interaction parameter is lowered. Notice that the
analysis above infers that the system will eventually enter the
metallic phase as u is decreased for any density.

Figure 6 explicitly shows regions in the gap phase dia-
gram where the gap equation lacks a solution with any posi-
tive 
. The diagrams are plotted for the same values of  as
in Fig. 5. The black regions are where the gap equation is
solutionless and represent a �semi� metallic phase. Clearly, as
 is increased, the metallic region expands. We find that the
superconducting �white� and metallic �black� regions are
separated by a second-order phase transition.

The emergence of this dissipation-induced metal-
superconductor quantum phase transition is not a peculiar
consequence of the relativistic nature of the quasiparticles in
graphene. A similar result is obtained for an ordinary BCS
system with Schrödinger fermions. In this case, a single-
band form of the gap equation in Eq. �47� obtained with the
dispersion in the formula replaced by the usual quadratic
form,

1

U
=

1

N
�
k

1

�Ek
tan−1�Ek

�
� , �62�

where

2
3
4
5

0 0.1 0.2 0.3 0.4

u c

γD

FIG. 4. �Color online� The plot of critical coupling uc as a func-
tion of reduced leads-graphene coupling  D= /D.
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FIG. 5. �Color online� Plots of the BCS gap, 
, in the parameter
space of attractive interaction strength u and electron density n. The
three diagrams correspond to different values of leads-graphene
coupling strengths. In �a�, the system is closed, i.e.,  =0, while in
�b� and �c�,  =0.1 and 0.2, respectively. As the coupling is in-
creased, the blue region in the phase diagram where the gap is small
grows. In parts of the blue regions in �b� and �c� the gap is zero
even for n�1, indicating that a metal-superconductor quantum
phase transition emerges in the presence of dissipation.
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Ek = ���k − 
�2 + 
2 �k =
k2

2m
.

At 
=0, where the integral is maximized, we get

1

Uc
=

Am

2�2N
�


−�


+� d�

�� − 
�
tan−1� �� − 
�

�
�

=
Am

2�2N
�

−�

� dx

�x�
tan−1� �x�

�
� . �63�

This integral is convergent for any finite ��0. But at �=0
the integral diverges signifying that Cooper instability occurs
for any finite attractive U.

B. Effect of voltage (vÅ0)

So far, we have discussed the effect of leads-induced dis-
sipation on the gap phase diagram in the absence of voltage.
We now consider the effects of driving an out-of-plane
charge current through the superconducting graphene sheet.
Here, we are limited to a regime of small voltages, specifi-
cally v�min�1, 
. As mentioned before, we assume v
!
L−
R�0 and allow asymmetric couplings of the lead-
layer couplings  L and  R. In the absence of current �v=0�,
the gap equation depends only on the sum of these couplings
 = L+ R. But Eq. �56� shows that in the presence of current
�v�0� the number density depends on these couplings inde-
pendently, and depending on the relative strengths of these
couplings the dominant correction term may change sign.
The main qualitative modifications to the gap phase diagram
in the presence of finite voltage reflect the influence of this
correction term.

In the small voltage regime and for  �1, the dominant
correction term gives a correction of order  v�1 to the

number density, which is of order unity. Because the modi-
fications to the gap phase diagram due to voltage are ex-
pected to be small we present a cartoon representation of
how it affects the boundary of the metallic region �black
region in Fig. 6�. This is shown in Fig. 7. Modifications to
the metallic region of the phase diagram are plotted here for
 L� R in Fig. 7�a� and  L� R in Fig. 7�b�. The plots reveal
that the metallic region �also the dark blue regions in Fig. 5�
shifts vertically away from half filling. For  L� R the apex
shifts up while for  L� R it shifts down. Given that 

= �
L+
R� /2 and v�0, the lowest-order voltage correction
in Eq. �56� tells us that the number density increases or de-
creases depending on the asymmetry of the lead couplings. If
 L� R, n increases, while if  L� R, n decreases. The gap
equation yields the largest value of uc given by  and v when
m=0. Thus, the above observation tells us that for  L� R,
m=0 is achieved not at half filling as in the equilibrium case
but at n�1. This shifts the apex upward. The opposite oc-
curs for  L� R. The nonequilibrium gap equation is conver-
gent for all 
; thus, a metallic phase is once again expected
at all densities.

V. CONCLUSION

In conclusion, we have theoretically studied the effects of
dissipation and nonequilibrium drive on the properties of su-
perconducting graphene. An external steady-state current
was perpendicularly driven through the graphene sheet by
attaching it to two leads which were equilibrated at two con-
stant but different chemical potentials. The mean-field BCS
theory of superconductivity on graphene was extended to the
nonequilibrium situation by formulating the theory on the
Keldysh contour. After obtaining nonequilibrium gap and
number density equations we studied the BCS gap as a func-
tion of attractive interaction strength u and electron density n
for various lead-graphene coupling strengths  and voltages
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FIG. 6. The dark areas above show regions in the phase diagram
where the gap equation lacks a solution for any finite 
; the gap
vanishes in these regions. As in Fig. 5, the system is closed for plot
�a� while  =0.1 and 0.2 in plots �b� and �c�, respectively.
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FIG. 7. A cartoon plot showing the effect of voltage on the
boundary of the metallic region. The dashed lines in both plots
denote the boundary at v=0. The shaded area is the metallic region
after a steady-state bias is applied. In both plots, the applied voltage
is v=0.1. However,  L� R in �a� while  L� R in �b�. Essentially,
the voltage-induced modification is to shift the metallic region to
higher values in density or to lower values depending on the polar-
ity of the voltage and the lead-coupling asymmetry.
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v. We have shown that dissipation results in a suppression of
the BCS gap at both zero and finite voltages. We argued that
the coupling of the graphene sheet to external baths acts as a
pair-breaking mechanism because it causes an electron that
constitutes a Cooper pair to escape into the leads. Once an
electron leaves the scattering region, it looses coherence with
its time-reversed partner and the destruction of the Cooper
pair entails.

A quantitative understanding of why the gap is signifi-
cantly suppressed by dissipation can be gained by observing
how dissipation affects the gap equation. Recall that the BCS
gap equation for an ordinary superconductor28 in closed
equilibrium is given by


 = uTN�0��
n




��n
2 + 
2

. �64�

N�0� is the density of states at the Fermi energy, and u�0 is
the attractive interaction strength. A general result for these
ordinary superconductors is that the gap equation �Eq. �64�	,
and hence the gap, is unaffected by time-reversal-invariant
perturbations. Take, for example, the influence of nonmag-
netic impurities on the superconducting state. The gap equa-
tion obtained after invoking disorder averaging and the Born
approximation reads


 = uTÑ�0��
n


̃

��̃n
2 + e
̃2

, �65�

where �̃ and 
̃ are frequency and order parameter renormal-

ized by the perturbation,29–31 and Ñ�0� is the density of states
in the presence of the perturbation. The essential point is that

�̃ and 
̃ are related to their unrenormalized counterparts by a
common factor "="��n ,
�, i.e.,

�̃ = "� ,


̃ = "
 .

Because this factor " cancels out in Eq. �65�, the gap equa-
tion remains invariant and leads to the result that the gap is
unaffected by nonmagnetic impurities.32

Imagine now that a pure ordinary superconductor is
coupled to an external bath in equilibrium. The Nambu-
Gorkov equations can be straightforwardly derived for this
case,

�i�n + i sgn��n�� − �k	G + 
F = 1, �66�

�i�n + i sgn��n�� + �k	F + 
G = 0, �67�

where the ordinary and anomalous Green’s functions are
given by

G�k,�n� = − �
0

	

d��T�ck,↑���ck,↑
† �0�
ei�n�,

F�k,�n� = − �
0

	

d��T�ck,↑���c−k,↓�0�
ei�n�.

We immediately see from Eqs. �66� and �67� that � and 

scale asymmetrically, namely,

�̃ = "�, 
̃ = 
; " = 1 +
�

��n�
. �68�

Here, � is the rate at which electrons decay into the bath.
The asymmetry in the renormalization of � and 
 �Eq. �68�	
greatly affects the gap equation, Eq. �65�, and shows how
dissipation can affect the gap significantly. This is consistent
with the qualitative argument given above.

We believe the observed features in the gap phase dia-
gram �Figs. 5 and 6� to be robust even in the presence of
fluctuation effects. Indeed, fluctuation effects are expected to
be important only near the critical point.21,33 Renormaliza-
tion group treatment of these fluctuations in the vicinity of
the metal-superconductor quantum critical point is a topic
that we are currently addressing. Results from this work may
shift the boundaries of the transition and modify scaling
properties near the transition. However, the gap phase dia-
gram presented in this work is nevertheless expected to be
valid at a qualitative level.

We also expect the phenomenon of dissipation-induced
suppression of the gap to occur in cases where the geometry
of the system has more relevance to actual experimental set-
ups. In particular, we have verified in equilibrium that the
phenomenon persists even for a graphene sheet placed on top
of a single substrate with which it exchanges particles. In the
context of itinerant electron magnets,21,33 nonequilibrium
renormalization-group analysis showed that the critical prop-
erties of the system near its ferromagnet-paramagnet quan-
tum critical point are impervious to the change in geometry

u

v

u0
c

u∗

v(u∗)
SC

Metal

FIG. 8. A plot of uc vs v for a fixed 
. The plot line separates
the metallic and superconducting phases of our system. Adjusting 

will tune the location of uc

0 on the x axis but the general shape of the
curve is not modified.
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with which the nonequilibrium drive is applied to the system.
In light of these works and our analysis, we expect our quali-
tative results to hold both in and out of equilibrium even
when the system geometry is altered to the more experimen-
tally accessible configuration mentioned above.

The emergence of the metal-superconductor quantum
phase transition in the graphene subsystem at both zero and
finite voltages gives rise to the possibility of inducing the
phase transition using external bias. While fixing the average
chemical potential 
 to some value, v can be changed by
adjusting 
L and 
R symmetrically about 
. uc is obtained
from the gap equation in this situation by fixing 
=0 and 

to some value. Figure 8 shows a generic plot of uc as a
function of voltage. If the interaction strength, u, of the sys-
tem is at u=u�, then for v�v�u�� the system will be metallic.
However, when v is increased and passes v=v�u��, the sys-
tem will become superconducting. uc

0 can be tuned by adjust-
ing the average chemical potential 
. It is clear from Eq. �56�
that when the average chemical potential 
 is fixed, the elec-
tron density can change as a function of voltage.

This voltage-induced metal-superconductor quantum
phase transition in open nonequilibrium graphene is possible
when uc

0 in Fig. 8 is less than the attractive interaction
strength u� so that voltage can be increased to drive the sys-
tem from the superconducting phase to the metallic phase.

An estimate for u� can be made within the weak-coupling
limit using15

u� =
uc� = 0�

1 −
m

D
�1 + ln� Tc�

1.154m
�� . �69�

Equation �69� was obtained in the context of closed equilib-
rium graphene and may not be an accurate estimate for u� in
the presence of external leads. Nevertheless, we use this es-
timate in conjunction with the assumption of weak lead-layer
coupling  �0.001. Adjusting the average chemical potential
of the leads at m�0.2t and estimating the critical tempera-
ture from those of graphite intercalated compounds,34,35 i.e.,
Tc�10 K, we obtain u��1.56t and uc

0�1.47t. The system
then is initially in the superconducting phase and enters the
metallic phase with the application of voltage.
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